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ABSTRACT

A novel design of a composite circular tube possessing bend-twist coupling at the
structural level is presented. When subjected to a bending moment the tube undergoes
twisting in addition to bending. Conversely a torque results in bending in addition to
rotation. This coupling causes the shear center of the cross section to be away from the
center of the tube. An analytical model is proposed and closed-form equations for
shear center distance are derived for both straight and tapered composite tubes. The
results are verified by performing finite element analysis. Special tubes were
fabricated and tested to measure the shear center distance. The agreement in results is
excellent. It is found that the location of the shear center is independent of the shaft
radius but proportional to the length of the tube.

1 INTRODUCTION

Tubular structures are an efficient design when it is necessary to carry the
combined loading of bending and torsion. There are applications when a transverse
force needs to be applied to a tubular lever eccentrically without resulting in twisting.
Examples include golf clubs or robotic lifting arms. In circular tubes made of a
homogeneous material the shear center is always at the center of the circular cross
section. It is true for tubes made of an anisotropic material as long as the entire cross
section is of the same material. By extension it is true for any laminated tube with any
arbitrary laminate stacking sequence, as long as the lay-up remains the same along the
entire circumference of the tube. Thus the only way the shear center can be moved in a
tube is by using two different materials.
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Figure 1. Composite tube loaded through an off axis shear center. The longitudinal lines indicate
absence of rotation, not fiber orientation.

Recently, Rohde et al. [1], [2], [3] have proposed a novel design for composite
tubes which is intended to create a coupling effect between bending and twisting
deformations. The design is described in detail in the experimental section. First we
present a beam theory for an anisotropic composite tube subjected to combined
bending and torsion to characterize the bend-twist coupling in the aforementioned tube
by Rohde et al. The analytical results are verified using finite element analysis and
experimental testing. A simple formula is derived for the shear center distance,
distance of shear center from the axis of the tube. This can be used to optimize the
design to achieve the desired shear center distance, as a larger shear center distance
means a greater amount of bend-twist coupling.

Rao and Chan [4] have developed an analytical model for the analysis of
laminated tubes subjected to both an axial force and a twisting moment. They
modified the lamination theory to account for the ply stiffness of a differential element
along the circumference of the tube using the appropriate transformation. Then the
stiffness of the tube was obtained by integrating the stiffness around the
circumference. In the present approach, suitable assumptions are made about the
deformation of the tube and the shear stress distribution. This leads to an independent
beam theory for composite tubes.

In the experimental section, a brief description of the design and construction of
theses shafts is detailed, including the unique problems that arose in their construction.
The experimental set-up is detailed which explains the equipment constructed for
locating the shear center. Many of the steps were repeated multiple times in order to
reduce the measurement uncertainty.

2 ANALYTICAL MODEL

In this paper we give a brief description of the analytical model. The details can be
found in [3]. Consider a thin-walled tube with the tube axis parallel to the x-axis. The
mean radius of the tube is R and the wall thickness #<<R. The tube is made of two
anisotropic materials - top half is made of Material 1 and the bottom half is of Material
2. We assume that the tube is in a state of plane stress normal to the radial direction n

(see Figure 2) such thato, =7, =7, =0. Furthermore, we assume the hoop or
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circumferential stresso, =0.Thus the two significant stresses are the axial stress

0 and the shear stress7 . We assume that the tube deforms such that plane sections

remain plane and normal to the tube axis as in Bernoulli-Euler beam theory. As will be
seen later this assumption works well for the thin-walled, long tubes considered in this
study. Then the displacement field can be written as

Material (1

Material (2)

Figure 2. Cross section of the tube and the coordinate system.
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where 1y, vy and wy are the deflections of the beam axis. The axial strain takes the
form
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where & and K are the curvatures. We do not make any specific assumption about
the rotation of the cross section except the average rotation of the cross-section about

the x-axis is denoted by . But we assume the shear stress is uniform and given by

T = =1, 3)

where 7'is the torque acting on a cross section. The constitutive relation for both
materials can be written in the form [5]
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where £ and G are Young’s modulus and shear modulus, respectively,y is the

coefficient of mutual influence of the material, and S'U are the transformed compliance

terms of the lamina . Then from (2), (3) and (4) we obtain
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where the integration is performed over the cross section of the tube. Substituting
foro, from (5) we obtain relations between the force and moment resultants and
deformations [3]:
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In the above equations Ex is the average Young’s modulus given by
E. = (E)fl) +E? ) / 2, AE is  the  difference in the  Young’s
moduli, AE, = (E W Ef”) . Similarly o= (77?30 +12) ) / 2 and

A, —(77;1;5 77;2;5), A=27Rh is the cross sectional area and [ is the second

moment of inertia given by 7 = zR*h. Equation (7) can be inverted to obtain
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Thus one can calculate the deformations from the force and moment resultants.
The deflections can be obtained by integrating the strains and curvatures. From

equation (8) it is evident that a torque 7 can result in curvature K, causing deflection of
the tube in the z-direction. It is interesting to note that the torque 7" does not cause
curvature kK and this is due to symmetry of the cross section about the z-axis. The

average unit angle of twist can be derived as
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Again the details of the derivations can be found in [3].

Using eq. (8) one can expressé,and K, in eq. (9) in terms of force and moment

resultants P, M, and 7. Thus it is obvious that a bending moment M, about the y-axis
can cause twisting in the tube demonstrating the bend-twist coupling.

The present formulation is based on Euler-Bernoulli beam theory and hence the shear
stresses due to transverse forces V) and V. are not accounted for. Only the shear
stresses due to the torque are included. The transverse shear stresses can be recovered

from 0_(x) using the equilibrium equation as in classical mechanics of materials.
Integrating the equilibrium equation we obtain [3]
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3 APPLICATION TO FIBER COMPOSITE TUBES

3.1 Tube Made of an Anisotropic Material with Different Orientations

Recently Rohde et al. [1] have proposed a novel composite tube design which
exhibits the bend-twist coupling described in the previously (see Figure 3). In this
design two different lay-ups or fiber orientations are used for each half of the circular
tube. Assume the tube is made of a unidirectional fiber composite. The fiber-angle is
the angle between the fiber direction (1-direction) and the x-axis. It is assumed +&
for the top half of the tube (Material 1) and —& for the bottom half (Material 2) as
shown in Figure 3 and Figure 4.

Figure 3. An isometric view of the composite tube showing different fiber orientations on the top
and bottom halves.

Figure 4. The left figure shows the top half of the tube with fiber orientation +a. Right figure
shows the bottom half (fiber angle -a) viewed from the top. Note the difference in the direction of
circumferential direction (s-axis) in the two figures.

The elastic constants in the x-s coordinate system can be obtained from the

orthotropic engineering elastic constants E,, E,, G, andv,, as follows [5]:
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It is obvious from the above relations that for the present example
EV=EP =E, AE =0,GV=G? =G, AG_ =0

m \?
(1) (2) 0 [njxs]:(nx_,xs) (13)

=- B 7l = OJ A =2 5
nx,xs nx,xs nx,xs nx,xs nx,xs E E

X X

Then equations (7) and (9) can be simplified as
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From the above relations (2nd and 4" equations) one can note the coupling between the
bending moment M, and the torque 7. The two relevant equations can be written as
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In deriving the above relations we have used T =27rR2hTO, J=21=27zR’h, and the

(15)

symmetry relation 77, / E =n,. / G . The shear stresses due to the transverse force
F can be obtained from [3] using AE, =0 and £ =E? =E .
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Note that the shear stress expression is the same for both top and bottom halves of the
tube. The constant 7 (0) can be evaluated from the fact that the moment of the shear

stresses about the center should vanish as the force F~ is applied at the center. The final
expression for shear stress takes the form
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Thus the shear stress distribution will be symmetric about the z-axis such
that 7 (y) =T, (—y) . Thus the shear flow will be in the counter clockwise direction
on the right half of the tube ()>0) and in the clockwise direction in the left half (y<0).

The shear stresses will not contribute to rotation about the x-axis as the material is also
symmetric about the z-axis.

3.2 Shear Center

Consider a cantilevered tube clamped at x=0. First we will consider the case where
the tube is subjected to a force F. at the tip x=L. The force is such that the line of
action is through the center of the tube. The bending moment distribution is given by

M»\_ (x)=—F (L—x). The tip rotation about the x-axis can be obtained from the

second of equation (15):
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Integrating the above equation and noting ¥ (0)=0 we obtain the tip rotation Wf due

the transverse force £ as
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From (15) the rotation L//ir due to torque 7 can be derived as
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The location of the shear center can be derived as follows. Let the shear center
distance — distance of the shear center from the tube axis — be denoted by e, (Figure 5).
That is, if the transverse force F’ is applied at the shear center it would not produce
any twisting of the tube, as the torque produced by the eccentric loading, £’ e,, would
cause an angle of twist equal in magnitude but opposite in direction to that produced
by the force F.. Then,
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Substituting from (19) and (20) in the above equation, the shear center distance can be
written in a non-dimensional form as
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From (14) we note that the bending moment M. due to a transverse force F, will not
cause any twisting. Hence the shear center will be on the y-axis at a distance e, from
the center of the tube.

Material 1 —_ \
y

Material 2 / TFZ

Figure 5. Shear Center for a tube made of an anisotropic material with different orientation of the
principal material axis in the top and bottom halves of the tube as shown in Figure 3.

We have already shown that the transverse shear stresses due to the force £ do not
contribute to the rotation due to symmetry of the cross section about the z-axis. Thus
we note the eccentricity of the shear center in the present case is due do the extension-
shear coupling of the material. In homogeneous beams the eccentricity of the shear
center is due to asymmetry of the cross section, e.g., a C-channel. That is why the
shear center location in the present case is independent of the radius R, but
proportional to the tube length L and the coefficients of mutual influencer.

3.3 Laminated Composite Tubes

In most applications the tube has to be made of multiple plies with different fiber
orientations to achieve a given bending stiffness, torsional stiffness and desired bend-
twist coupling. In that case the laminated tube can be modeled as a tube with an

equivalent anisotropic material. The compliance matrix [§ ] (see equation (4) above)

of such an equivalent material can be obtained from the in-plane stiffness [4] of the
laminate as follows [5]:

(S, ]=hl4]" (23)

where 7 1s the laminate thickness. It should be noted that the above idealization is
valid only for thin-walled tubes such that 7/R<<1.

4 FINITE ELEMENT ANALYSIS

The commercial finite element software Abaqus was used for computational
analysis of aforementioned tubes. Eight-node doubly curved thick shell elements (S8R
Element) were used to model the tubes. This element has six DOFs per node. About
30 elements were used along the circumference of the tube. The number of elements
in the length direction was such that the aspect ratio of elements is approximately
equal to unity. That is, the elements were almost square in shape. In the examples
considered the tube was fixed at one end by setting all degrees of freedom equal to



zero. At the free end, a reference node was created at the center of the tube and it was
connected to the circumferential nodes using multipoint constraints. The transverse
force and the couple were applied at the reference node.

Figure 6. (a) FE mesh of the composite tube; (b) deformed shape after subjected to a torque at the
tip. Note that the circumferential expansion of the tube is exaggerated in the figure.

S RESULTS AND DISCUSSION

All examples below are concerned with a cantilevered tube of length L, mean
radius R=10 mm and wall thickness #=2 mm. The tapered tube’s radius varies from 5
mm at the fixed end to 15 mm at the free end.

5.1 Example 1a- One Anisotropic Material

The laminate configuration or lay-up is denoted by[20 *] The superscript®

denotes that for the top half of the tube « =+20° and for the bottom half & = —20° (see
Figure 3). The elastic constants are: E;=138 GPa; E,2=9 GPa; G;=6.9 GPa

andV,, =0.3. Tubes of two different lengths, 200 and 300 mm, were considered to

demonstrate the length-dependence of shear center location. Two different forces were
considered: a transverse tip force F; applied at the center of the tube and a torque 7. In

TABLE 1 the FE results are compared with that obtained from the analytical
method. It can be noted that the agreement for deflection, rotation, and shear center

distance are excellent. Furthermore, the ratio e, / L does not change at all for the two
different lengths of the tube.



TABLE I. RESULTS FOR TUBES MADE OF ONE ORTHOTROPIC MATERIAL BUT
WITH OPPOSITE FIBER ORIENTATIONS IN THE TOP AND BOTTOM HALVES. THE TOP
HALF OF THE TUBE CONSISTS OF [+20] LAYERS AND THE BOTTOM HALF OF [-20]

LAYERS.
Length | Load Tip deflection % (L) Shear Center
_ Tip rotation ™
L(mm) | F(N) wy(L) (107 mm) P rotat e, /L
T (N-mm) (10 Radians) Y
FEA Analytical FEA Analytical FEA Analytical
F,=1 9.162 9.211 77.21 | 78.70
2 .202 .202
0o T=1 77.14 78.71 1.915 1.951 0.20 0.20
F,=1 30.71 31.11 1740 | 177.0
300 0.202 | 0.202
T=1 174.0 177.0 2.881 | 2.920

5.2 Example 1b - Laminated Tube

In this example we consider a laminated tube. The lay-up is denoted by
[0/(20%),/0]r. Explicitly stated, the top half of the tube has a lay-up given by
[0/(20),/0]1 and the bottom half [0/(-20),/0]. The elastic constants of the ply material
were same as in Example 1A. The forces applied are similar to the previous example.
The results are presented in TABLE II. Again one notices that the agreement between
the analytical results and FEA results is excellent. The shear center distance specified

by e, / L is smaller, i.e., the shear center is closer to the tube center, for the laminated

tube compared to the 20-degree lamina in Example 1A, because the laminate includes
some 0-degree plies. The reduction in the effective coefficient of mutual influence due
to the presence of 0-degree plies reduces the shear center distance also.

TABLE II. RESULTS FOR TUBES MADE OF TWO DIFFERENT COMPOSITE
LAMINATES. THE LAY-UP FOR THE TOP HALF OF THE TUBE IS [0/20,/0]s; FOR THE
BOTTOM HALF [0/-20,/0]s

Length Load Tip deflection _ oy (L) Shear Center
L(mm) | F(N) wy(L) (10°mm) | TIPotation” = e, /L
0 -6 . y
T (N-mm) (10” Radians)
FEA Analytical | FEA Analytical FEA Analytical
F,=1 4,462 4,254 25.23 | 25.49
200 0.0820 | 0.0820
T=1 25.23 25.49 1.539 | 1.555
F,=1 14,610 14,350 56.83 | 57.36
300 0.0820 | 0.0820
T=1 56.8 57.36 2.31 2.332

5.4 Experimental Validation




Heat shrink
0° ply
+23°ply
+23° ply

Three-piece
Mandrel

Teflon®
Teflon®

0° ply
-23% ply

-23% ply

Figure 7. Schematic of lay-up

The composite tubes were designed with the chevron pattern detailed above. An
example of the lay-up is shown in

Figure 7. The 0° plies on the inner and outer layers were added to provide
structural integrity to the lay-up. The experimental set-up is shown in Figure 8 and
Figure 9. A special apparatus was constructed to load the tip with an adjustable torque,
Figure 10. Digital image correlation (DIC) was used to measure tip rotation and
deflection. From these measurements shear center values were determined as the
length of moment arm that results in bending absent twisting. Repeating this process
for different shaft lengths and orientations allowed for a final e,/L measurement for the
given design. Steps of the experiment were repeated to reduce the various
uncertainties in these measurements. The experiment utilized three dimensional DIC, a
vice to simulate the rigid boundary of a cantilever, an adjustable moment arm on
which to load the specimen, and the means to manufacture composite shaft specimens.
The results were compared against finite element and analytical predictions. The final
average experimental e,/L for all four shafts was 8% higher than what the analytical
method and FEA predicted, [1].

— P
DIC camera Momentarm
Weight

Figure 8. Schematic of the experimental set-up



Figure 9. Experimental set-up

Figure 10. Loading fixture

Figure 11. Flat, speckled target for DIC

The final results averaged across multiple tests on four nominally identical shafts
1S shown in TABLE III. COMPARISON OF TECHNIQUESTABLE III.



TABLE HII. COMPARISON OF TECHNIQUES

Shear Center
Sample per Unit Length
(mm/mm)

Experimental 0.099

Analytical 0.092

FEA 0.092

6 SUMMARY

An analytical model is presented for thin walled composite tubes subjected to a
combination of bending and torsion. The methods are applied to a novel design of
composite tubes with lay-ups in the top and bottom halves of the cross section. Due to
the difference in lay-ups, the tube exhibits strong bend-twist coupling and the shear
center is at a distance from the geometric center of the tube. The shear center distance
is independent of the tube radius but proportional to the length of the tube and the
effective coefficient of mutual influence of the laminates. The results are verified
using finite element analysis and experimental testing. The excellent agreement in
results suggests that the assumptions made in the analytical model are reasonable and
correct.

REFERENCES

[1] S. E. Rohde, P. G. Ifju, B. V. Sankar and D. A. Jenkins, "Experimental
investigation of bend-twist coupled cylindrical shafts," in Composite, Hybrid,
and Multifunctional Materials, 2015.

[2] S. E. Rohde, P. G. Ifju, B. V. Sankar and D. A. Jenkins, "Experimental
testing of bend-twist coupled composite shafts," Experimental Mechanics,
2015.

[3] A. Jonnalagadda, A. Sawant, S. Rohde, B. Sankar and P. Ifju, "An
Analytical Model for Composite Tubes with Bend-Twist Coupling,"
Composite Structures, 2015.

[4] C. Rao and W. S. Chan, "Analysis of laminated composite tapered tubes,"
in Proceedings of the American Society for Composites (ASC) 23rd Technical
Conference, Memphis, TN, 2008.

[5] R. F. Gibson, Principles of Composite Material Mechanics, Ed. 3, Boca
Raton, FL: CRC Press, 2012.



